Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605110

RESUMO

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Assuntos
Coinfecção , Coronavirus Humano OC43 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Anticorpos de Cadeia Única , Humanos , RNA/metabolismo , Vírus da Influenza A Subtipo H3N2 , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo
2.
Plant Reprod ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598160

RESUMO

KEY MESSAGE: This review provides a thorough and comprehensive perspective on the topic of cucumber sexual expression. Specifically, insights into sex expression mediated by pathways other than ethylene are highlighted. Cucumber (Cucumis sativus L.) is a common and important commercial crop that is cultivated and consumed worldwide. Additionally, this species is commonly used as a model for investigating plant sex expression. Cucumbers exhibit a variety of floral arrangements, comprising male, female, and hermaphroditic (bisexual) flowers. Generally, cucumber plants that produce female flowers are typically preferred due to their significant impact on the overall output. Various environmental conditions, such as temperature, light quality, and photoperiod, have been also shown to influence the sex expression in this species. Multiple lines of evidence indicate that ethylene and its biosynthesis genes are crucial in regulating cucumber sex expression. Gibberellins, another well-known phytohormone, can similarly influence cucumber sex expression via an ethylene-independent route. Further studies employing the next-generation sequencing technology also visualized a deeper slice of the molecular mechanism such as the role of the cell cycle program in the cucumber sex expression. This review aims to provide an overview of the sex expression of cucumber including its underlying molecular mechanism and regulatory aspects based on recent investigations.

3.
Research (Wash D C) ; 6: 0016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36930763

RESUMO

Tomato yellow leaf curl virus (TYLCV) dispersed across different countries, specifically to subtropical regions, associated with more severe symptoms. Since TYLCV was first isolated in 1931, it has been a menace to tomato industrial production worldwide over the past century. Three groups were newly isolated from TYLCV-resistant tomatoes in 2022; however, their functions are unknown. The development of machine learning (ML)-based models using characterized sequences and evaluating blind predictions is one of the major challenges in interdisciplinary research. The purpose of this study was to develop an integrated computational framework for the accurate identification of symptoms (mild or severe) based on TYLCV sequences (isolated in Korea). For the development of the framework, we first extracted 11 different feature encodings and hybrid features from the training data and then explored 8 different classifiers and developed their respective prediction models by using randomized 10-fold cross-validation. Subsequently, we carried out a systematic evaluation of these 96 developed models and selected the top 90 models, whose predicted class labels were combined and considered as reduced features. On the basis of these features, a multilayer perceptron was applied and developed the final prediction model (IML-TYLCVs). We conducted blind prediction on 3 groups using IML-TYLCVs, and the results indicated that 2 groups were severe and 1 group was mild. Furthermore, we confirmed the prediction with virus-challenging experiments of tomato plant phenotypes using infectious clones from 3 groups. Plant virologists and plant breeding professionals can access the user-friendly online IML-TYLCVs web server at https://balalab-skku.org/IML-TYLCVs, which can guide them in developing new protection strategies for newly emerging viruses.

4.
Front Plant Sci ; 13: 970941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247535

RESUMO

Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.

5.
Viruses ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34960653

RESUMO

Fraxinus rhynchophylla, common name ash, belongs to the family Oleaceae and is found in China, Korea, North America, the Indian subcontinent, and eastern Russia. It has been used as a traditional herbal medicine in Korea and various parts of the world due to its chemical constituents. During a field survey in March 2019, mild vein thickening (almost negligible) was observed in a few ash trees. High-throughput sequencing of libraries of total DNA from ash trees, rolling-circle amplification (RCA), and polymerase chain reaction (PCR) allowed the identification of a Fraxinus symptomless virus. This virus has five confirmed open reading frames along with a possible sixth open reading frame that encodes the movement protein and is almost 2.7 kb in size, with a nonanucleotide and stem loop structure identical to begomoviruses. In terms of its size and structure, this virus strongly resembles begomoviruses, but does not show any significant sequence identity with them. To confirm movement of the virus within the trees, different parts of infected trees were examined, and viral movement was successfully observed. No satellite molecules or DNA B were identified. Two-step PCR confirmed the virion and complementary strands during replication in both freshly collected infected samples of ash tree and Nicotiana benthamiana samples agro-inoculated with infectious clones. This taxon is so distantly grouped from other known geminiviruses that it likely represents a new geminivirus genus.


Assuntos
Fraxinus/virologia , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Bases , DNA Viral/genética , Geminiviridae/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , República da Coreia , Nicotiana/virologia
6.
Front Plant Sci ; 11: 558403, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329624

RESUMO

Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.

7.
Plants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365497

RESUMO

Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite begomovirus affecting tomato cultivation on the Indian subcontinent. Recently, however, a new strain of the virus, named ToLCNDV-ES, has spread to Mediterranean countries such as Spain, Italy, and Tunisia, and occurred in Cucurbita crops, causing economic damage. Although ToLCNDV is spread by the sweet potato whitefly (Bemisia tabaci), like other begomoviruses, it has not been clear how ToLCNDV suddenly spread from the Indian subcontinent to the Mediterranean region. In 2017, ToLCNDV was diagnosed in young seedlings germinated naturally from fruits fallen in the prior year on a farm located in Giugliano in Campania, Naples, Italy, suggesting a possible role of the seeds in vertical transmission of the virus. Because sweet potato whiteflies were widespread naturally in that region, it was necessary to verify that in an artificial insect vector-free condition. Seeds were harvested from two ToLCNDV-infected zucchini squash cultivars in Naples in 2017 and 2018 to examine whether ToLCNDV can be transmitted from zucchini squash seeds to young plants. Viral DNA was amplified from these seeds and 1- to 3-week-old seedlings germinated from them with a ToLCNDV-specific primer set. According to PCR results, viral contamination was confirmed from all harvested seeds and dissemination was proven from 61.36% of tested seedling samples. Mechanical transmission from seed-borne virus-infected seedlings to healthy zucchini squash plants was also succesful, demonstrating that seedlings from ToLCNDV-infected seeds did act as inoculum. This is the first report demonstrating that ToLCNDV is a seed-transmissible virus in zucchini squash plants in Italy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA